Nanoscale elastic modulus of single horizontal ZnO nanorod using nanoindentation experiment

نویسندگان

  • Muhammad Yousuf Soomro
  • Ijaz Hussain
  • Nargis Bano
  • Esteban Broitman
  • Omer Nur
  • Magnus Willander
چکیده

We measure the elastic modulus of a single horizontal ZnO nanorod [NR] grown by a low-temperature hydrothermal chemical process on silicon substrates by performing room-temperature, direct load-controlled nanoindentation measurements. The configuration of the experiment for the single ZnO NR was achieved using a focused ion beam/scanning electron microscope dual-beam instrument. The single ZnO NR was positioned horizontally over a hole on a silicon wafer using a nanomanipulator, and both ends were bonded with platinum, defining a three-point bending configuration. The elastic modulus of the ZnO NR, extracted from the unloading curve using the well-known Oliver-Pharr method, resulted in a value of approximately 800 GPa. Also, we discuss the NR creep mechanism observed under indentation. The mechanical behavior reported in this paper will be a useful reference for the design and applications of future nanodevices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays

Articles you may be interested in The study of the mechanical properties of Au films by nanoindentation techniques AIP Conf. High magnetic field annealing effect on visible photoluminescence enhancement of TiO2 nanotube arrays Appl. Magnetic and mechanical properties of rolled-up Au/Co/Au nanomembranes with multiple windings Direct observation of twin deformation in YBa2Cu3O7− x thin films by i...

متن کامل

Surface Morphological and Nanomechanical Properties of PLD-Derived ZnO Thin Films

This study reports the surface roughness and nanomechanical characteristics of ZnO thin films deposited on the various substrates, obtained by means of atomic force microscopy (AFM), nanoindentation and nanoscratch techniques. ZnO thin films are deposited on (aand c-axis) sapphires and (0001) 6H-SiC substrates by using the pulsed-laser depositions (PLD) system. Continuous stiffness measurements...

متن کامل

Effects of nanoscale thickness and elastic nonlinearity on measured mechanical properties of polymeric films

Scanning probe microscope-enabled nanoindentation is increasingly reported as a means to assess the mechanical properties of nanoscale, compliant material volumes such as polymeric films and bio-membranes. It has been demonstrated experimentally that the Hertzian contact model developed for linear elastic materials of semi-infinite thickness fails to accurately predict the nominal elastic modul...

متن کامل

Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays.

We report a simple wet-chemical synthesis of ∼5 nm diameter ZnO nanorod arrays at room temperature (20 °C) and normal atmospheric pressure (1 atm) and their optical properties. They were single crystalline in nature, and grew in the [001] direction. These small diameter ZnO nanorod arrays can also be synthesized at 0 °C. Control experiments were also conducted. On the basis of the results, we p...

متن کامل

Aspect ratio dependence of the elastic properties of ZnO nanobelts.

The Young's modulus of ZnO nanobelts was measured with an atomic force microscope by means of the modulated nanoindentation method. The elastic modulus was found to depend strongly on the width-to-thickness ratio of the nanobelt, decreasing from about 100 to 10 GPa, as the width-to-thickness ratio increases from 1.2 to 10.3. This surprising behavior is explained by a growth-direction-dependent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012